Enfermedades cardiovasculares: diabetes *mellitus Cardiovascular diseases: diabetes mellitus*

J. Rosinés-Fonoll, J. Zarranz-Ventura

Resumen

La oculómica y el uso de biomarcadores retinianos para evaluar la salud sistémica está experimentando un crecimiento significativo, especialmente en relación con las enfermedades cardiovasculares y la diabetes *mellitus* (DM). Las imágenes de fondo de ojo, así como el uso de tecnologías como la tomografía de coherencia óptica (OCT) y la angio-OCT (OCTA), están siendo empleadas para construir bases de datos que permitan desarrollar algoritmos específicos capaces de identificar y caracterizar detalles clave de la estructura retiniana. En este capítulo, se realizará una breve introducción al uso de la inteligencia artificial (IA) en la clasificación y detección de la retinopatía diabética (RD) y las enfermedades cardiovasculares, con el objetivo final de prevenir la ceguera asociada a estas enfermedades.

Palabras clave: Oculómica. Inteligencia artificial. Enfermedades cardiovasculares. Retinopatía diabética. OCTA.

Resum

La oculòmica i el ús de biomarcadors retinians per avaluar la salut sistèmica està experimentant un creixement significatiu, especialment en relació amb les malalties cardiovasculars i la diabetes *mellitus* (DM). Les imatges de fons d'ull així com l'ús de tecnologies com la tomografia de coherència òptica (OCT) i la angio-OCT (OCTA) estan sent utilitzades per a construir bases de dades que permetin desenvolupar algoritmes específics capaços d'identificar i caracteritzar detalls clau de l'estructura retiniana. En aquest capítol, es realitzarà una breu introducció a l'ús de la intel·ligència artificial (IA) en la classificació i detecció de la retinopatia diabètica (RD) i malalties cardiovasculars amb l'objectiu final de prevenir la ceguera associada a aquestes malalties.

Paraules clau: Oculòmica. Intel·ligència artificial. Malalties cardiovasculars. Retinopatia diabètica. OCTA.

Abstract

Oculomics and the use of retinal biomarkers to assess systemic health is experiencing significant growth, particularly in relation to cardiovascular disease and diabetes *mellitus* (DM). Fundus imaging and the use of technologies such as optical coherence tomography (OCT) and angio-OCT (OCTA) are being used to build datasets and develop specific algorithms capable of identifying and characterising key details of retinal structure. This chapter provides a brief introduction to the use of artificial intelligence (AI) in the classification and detection of diabetic retinopathy (DR) and cardiovascular disease, with the ultimate goal of preventing blindness associated with these diseases.

Key words: Oculomics. Artificial intelligence. Cardiovascular disease. Diabetic retinopathy. OCTA.

5.3.Enfermedades cardiovasculares: diabetes mellitus

Cardiovascular diseases: diabetes mellitus

J. Rosinés-Fonoll¹, J. Zarranz-Ventura^{1,2}

¹Hospital Clínic de Barcelona. Universitat de Barcelona. Barcelona. ²Institut d´Investigacions Biomediques August Pi i Sunyer (IDIBAPS). Universitat de Barcelona. Barcelona.

Correspondencia: Josep Rosinés-Fonoll E-mail: <u>rosines@clinic.cat</u>

Introducción a la oculómica

La retina es la única estructura ocular directamente accesible que forma una extensión del cerebro, y permite la caracterización de la estructura microvascular y de la función del sistema nervioso central de manera no invasiva y en tiempo real. El término oculómica determina la composición de una serie de datos macroscópicos, microscópicos y de características moleculares oftalmológicas que se asocian con datos sistémicos y de enfermedad¹, permitiendo elaborar algoritmos para estudiar las asociaciones entre las imágenes y de los datos de interés oculares o sistémicos "etiquetados" a esas imágenes. La gran mayoría de abordajes en la oculómica se han realizado en *datasets* (conjunto de datos) de retinografías de fondo de ojo, de OCT y, en menor medida, de OCTA. Estos se basan en la generación de parámetros específicos y la descripción de las imágenes en las denominadas "huellas retinianas".

A lo largo de los años, se han identificado gran cantidad de biomarcadores retinianos para múltiples patologías, específicamente para las enfermedades neurológicas y las enfermedades cardiovasculares².

En este capítulo, se hará una breve introducción de la aplicación de la IA en las enfermedades cardiovasculares y, en especial, de la DM como factor de riesgo cardiovascular, para generar algoritmos que sean capaces de caracterizar detalles específicos de la estructura retiniana y poder establecer biomarcadores retinianos para la salud sistémica.

Dataset para análisis de imágenes retinianas

Es bien conocido que en el campo de la imagen vascular retiniana se han desarrollado múltiples algoritmos de IA. El análisis de las mismas se ha visto impulsado por la disponibilidad de grandes conjuntos de datos de imágenes del mundo real. La mayoría de aplicaciones de aprendizaje profundo (*deep learning* [DL]) utilizan bases de datos de imágenes. Una revisión reciente pone de manifiesto un total de 94 *datasets* públicos³ y otros de acceso privado que permiten analizar las imágenes de población heterogénea y, a su vez, que provienen de distintos aparatos. En el ámbito de la DM, los más utilizados son los que se muestran en la Tabla 1.

Softwares de análisis de vasculatura retiniana asistida por ordenador

Cuando hablamos de *software* de análisis de imágenes, podemos diferenciar entre el análisis tradicional o semiautomatizado de aquel completamente automático. Desde 1940, ha aumentado

	País	Nº de imágenes	Patología	Тіро	Aparato
Eye Picture Archive Communication System (Kaggle EyePACS)	EE. UU.	88.702	Gradación de RD	Retinografía	Centervue DRS, Optovue iCam, Canon CR1/Dgi/CR2, Topcon NW
Asia Pacific Tele-Ophthalmology Society (APTOS)	India	5.590	Gradación de RD	Retinografía	Cámara digital
Messidor	Francia	1.200	Gradación de RD Riesgo de EMD	Retinografía	
Messidor 2	Francia	1.748	Gradación de RD	Retinografía	TRC-NW6 cámara no midriática (Topcon)
Indian Diabetic Retinopathy Image Dataset (IDRiD)	India	516	Gradación de RD Segmentación de Iesiones	Retinografía	VX-10 alpha digital (Kowa)
Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening (DDR)	China	12.522	Gradación de RD Segmentación de Iesiones	Retinografía	-
E-ophtha	Francia	463	Sanos frente a enfermos Detección de exudados y microaneurismas	Retinografía	-
Kermany/Guangzhou	EE. UU., China	109.312	Gradación de RD, drusas, neovascularización coroidea y ojos sanos	OCT	Heidelberg SPECTRALIS SD-OCT
Standard Diabetic Retinopathy Database Calibration Level 0	Finlandia	130	Segmentación de lesiones	Retinografía	Cámara digital (no específicado)
Standard Diabetic Retinopathy Database Calibration Level 1	Finlandia	89	Segmentación de lesiones	Retinografía	Cámara digital (no específicado)
OCTAGON	España	213		OCTA	DRI OCT Triton (Topcon)
Retina Online Challenge	Países Bajos	100	Detección de hemorragias y microaneurismas	Retinografía	TRC-NW100/200 (Topcon), CR4-45NM (Canon)
Retinal Optical Coherence Tomography Classification Challenge	lrán	165		ОСТ	SD-OCT (Topcon)
2014 Srinivasan	EE. UU.	3.231	RD, DMAE y ojos sanos	ОСТ	Heidelberg SPECTRALIS SD-OCT

DMAE: degeneración macular asociada a la edad; EMD: edema macular diabético; OCT: tomografía de coherencia óptica; OCTA: angiografía por tomografía de coherencia óptica; RD: retinopatía diabética; SD: dominio espectral. Tabla extraída y adaptada de Khan *et al*.³ y Tsiknakis *et al*.⁴.

Tabla 1. Datasets más utilizados para la clasificación de la diabetes mellitus.

el interés en establecer asociaciones entre los signos vasculares retinianos (por ejemplo, hemorragias, exudados o alteración del calibre vascular) y las enfermedades sistémicas⁵.

Tres de los métodos iniciales diseñados para evaluar y medir los cambios vasculares son: el SIVA (*Singapore "I" vessel assessment*), el VAMPIRE (*vessels assessment and measurement platform for images of the retina*) y el IVA (*interactive vessel analysis*). Han demostrado

ser capaces de analizar datos de las imágenes para obtener medidas objetivas, como el calibre vascular arterial y venular, la dimensión fractal, la tortuosidad arteriolar o venular o el ángulo de ramificación de las arterias o de las venas⁶. Aun así, en los últimos años, se han desarrollado múltiples algoritmos de DL totalmente automatizados (por ejemplo, QUARTZ).

Oculómica en enfermedad cardiovascular

La carga en la salud de las enfermedades cardiovasculares hace de ellas un problema importante a nivel mundial. Su mortalidad se ha estimado por la Organización Mundial de la Salud (OMS) en 17,9 millones en 2019⁷.

Es crucial entender los mecanismos asociados, establecer los factores de riesgo (edad, sexo, tabaquismo, presión arterial, índice de masa corporal, colesterol o la DM) e identificar aquellos con un mayor perfil de riesgo cardiovascular mediante pruebas no invasivas. Es aquí donde los modelos de DL pueden incorporarse al proceso de diagnóstico y estimación del riesgo cardiovascular.

Se ha visto que la enfermedad de pequeño vaso tiene un papel importante en los procesos que conllevan al desarrollo de enfermedad cardiovascular y sus factores de riesgo^{8,9}.

La caracterización de la estructura microvascular y la determinación de métricas vasculares retinianas se pueden realizar tanto mediante la toma de imágenes de fondo de ojo, la OCT o la OCTA. El aprendizaje automático *(machine learning)* y, en particular, el DL se han empleado para la evaluación del riesgo cardiovascular y presentan un enorme potencial de análisis automático y cuantificación de biomarcadores vasculares retinianos para predecir factores de riesgo cardiovascular y eventos sistémicos vasculares^{10,11}.

Patrones alterados de la microvasculatura retiniana se han asociado con una mayor puntuación de riesgo cardiovascular, tanto en la mortalidad como en los factores de riesgo¹. Uno de los mayores artículos que nos resume los avances en enfermedad cardiovascular y oculómica es el trabajo realizado por Ting *et al. Novel Retinal Imaging in assessment of cardiovascular risk factors and systemic vascular disease* publicado en el libro indexado *Diabetic retinopathy and cardiovascular disease* en 2019¹².

Una de las primeras aplicaciones de IA en esta área fue la predicción de la estimación de los factores de riesgo cardiovascular basado en estas imágenes retinianas. El equipo de Google Research^{®10} designó una red convolucional neuronal (CNN) para predecir múltiples factores de riesgo cardiovascular basado en dos *datasets* (UK Biobank y EyePACS) con imágenes de más de 280.000 pacientes. Los resultados fueron relevantes para la predicción de eventos cardiacos mayores, la edad y la presión arterial sistólica. En otro trabajo reciente realizado con más de 5.000 participantes del estudio European Prospective Investigation into Cancer-Norfolk Eye Study, Owen et al.¹³ examinaron el calibre y la tortuosidad de los vasos retinianos mediante el programa informático QUARTZ. El aumento de la tortuosidad arteriolar se asoció con el aumento de la edad y la presión arterial sistólica, mientras que la tortuosidad venular estaba más relacionada con el índice de masa corporal y la DM tipo 2. Además, los biomarcadores retinianos basados en IA podrían motivar una posible modificación de la estratificación del riesgo cardiovascular y el consecuente tratamiento de los pacientes (tratamiento con estatinas o antiagregantes plaquetarios)¹⁴.

No obstante, sigue sin estar claro si el enfoque de la IA supera a los modelos de predicción tradicionales, aunque sí podrían ofrecer un valor añadido para grupos específicos de pacientes.

Como ya se ha dicho, la mayoría de los biomarcadores retinianos obtenidos mediante IA para predecir el riesgo cardiovascular provienen de imágenes de fondo de ojo. No obstante, otras nuevas tecnologías como la OCTA han permitido demostrar asociaciones significativas en la evaluación del perfil cardiovascular¹⁵, ya que permite centrarse en el análisis profundo de la red vascular retiniana, tales como la cuantificación del calibre vascular, la densidad vascular y la zona avascular foveal¹⁶. A continuación, se muestra una tabla con las características de algoritmos de predicción de eventos cardiovasculares mediante retinografías (Tabla 2).

Retinopatía diabética

La DM representa un serio problema actualmente a nivel mundial, afectando un total de 463 millones de personas en el momento actual, y se espera que aumente a 700 millones en el 2045¹⁸. Hasta un 30% de los pacientes diabéticos sufren alguna patología ocular relacionada con la diabetes¹⁹.

La RD es la principal causa de ceguera en los pacientes diabéticos, además de ser también la más frecuente y prevenible de nuevos casos de ceguera entre la población activa en países desarrollados²⁰.

En 2021, la prevalencia de RD en Europa era de 18,75% respecto a la totalidad de pacientes con DM, de los cuales un 5,49% tenían alteración visual grave, y un 5,29%, edema macular clínicamente significativo²¹. Este porcentaje aumenta con la edad, el tiempo de evolución de la DM y parámetros como la hemoglobina glicosilada²².

	Aplicación	Dataset	Arquitectura	Métricas	Resultado		
An Overview Lim <i>et al</i> . (2019)	Predicción de ictus	Singapore, Sydney and Mel- bourne and SCES, SiMES, SiNDI, DMPMelb, SP2	Unet, VGG19	AUC, sensibilidad y especificidad	0,96 (AUC)		
Ma et al. (2021)	Diagnóstico de ICVD	China and Beijing Research on Aging, BRAVE (411518)	Inception, ResNet	AUC	0,97 (AUC)		
Revathi <i>et al.</i> (2021)	Diagnóstico de CVD	Biobank and EyePACS, STARE	InceptionV3	Acc	0,91 (Acc)		
Al-Absi <i>et al</i> . (2022)	Diagnóstico de CVD	Qatar Biobank (1805)	CNN, ResNet	Acc	0,75 (Acc)		
Díaz-Pinto <i>et al</i> . (2022)	Predicción de infarto de miocardio	UK Biobank (71515)	Multichannel varioational autoencoder, CNN-ResNet50	AUC, sensibilidad y especificidad	0,80 (AUC)		
AUC: área bajo la curva; CNN: red convolucional neuronal; CVD: enfermedad cardiovascular; ICVD: ischemic cardiovascular disease; VGG: visual geometry group; Acc: accuracy. Tabla extraída y adaptada de Barriada <i>et al</i> ¹⁷ .							

Tabla 2. Principales algoritmos de predicción de eventos cardiovasculares.

Aunque la RD en muchos de los casos es asintomática en estados iniciales, se produce una afectación inicial de la retina neurosensorial y cambios clínicamente invisibles a nivel microvascular. Así, los pacientes diabéticos deben someterse a revisiones oculares periódicas para diagnosticar y tratar la enfermedad a tiempo. Es aquí donde el DL ha revolucionado el diagnóstico de la RD en los últimos años.

Los cambios iniciales de la RD son los microaneurismas, que se deben a la pérdida de pericitos de la pared de los vasos sanguíneos y la dilatación de los mismos. Otras alteraciones que se encuentran en la RD no proliferativa son las hemorragias, exudados duros y blandos y anormalidades microvasculares intrarretinianas.

La diferencia entre la RD proliferativa y la no proliferativa recae en la presencia de neovascularización, mientras que el edema macular diabético puede ocurrir en cualquier fase de la enfermedad²³.

La clasificación internacional de la RD en uso en la actualidad es clínica y observador-dependiente, y es importante establecer un modelo estandarizado para su clasificación. El protocolo de la *Early Treatment Diabetic Retinopathy Study* (ETDRS) es el más utilizado a nivel de la práctica clínica, aunque no se ha probado que sea fácil o práctico²⁴.

Se han propuesto otras escalas para mejorar la concordancia entre profesionales, como la *International Clinical Retinopathy Disease Severity Scale* (ICDRDSS), promovida por el *Global Diabetic Retinopathy Project Group*, en la que clasifican la RD en cinco grados de severidad²⁵ (Tabla 3).

Además, para reducir la heterogeneidad en las imágenes obtenidas, es importante realizar un preprocesamiento en cada una de ellas (Figura 1). Estas fases corresponden a: la mejora en el contraste; la reducción de sonido y la normalización; la transformación del color; el recorte y el redimensionamiento; y la segmentación de los vasos y del disco óptico⁴.

Clasificación de la retinopatía diabética

El objetivo principal de la clasificación de la RD es su detección y gradación mediante imágenes del fondo de ojo de la retina. La mayoría de estas vienen dadas por una clasificación de cinco niveles, aunque en algunos estudios se ha decidido clasificarla de manera distinta, juntando escalas que van de dos a seis niveles⁴, o incluso definiendo aquellos casos derivables (referable), en los que se observan lesiones moderadas, o casos que amenazan las visión cuando se observan lesiones severas en RD no proliferativa o neovascularización, respectivamente. Entre las arquitecturas más utilizadas son: VGG¹⁶, Inception family y ResNet. Uno de los problemas que surge cuando nos basamos en la clasificación de la RD es categorizar de manera correcta la RD leve. Lam et al.²⁶ encontró un 7% de sensibilidad en la clasificación leve, no así cuando se trataba de establecer casos de no RD o RD severa, además de producirse una mala clasificación en estos casos. Se han establecido varios modelos de DL para la clasificación de la RD, como vemos en la Tabla 4, la gran mayoría de ellos con valores de sensibilidad y especificidad por encima del 90%.

Figura 1. Lesiones típicas de la retinopatía diabética. (A) Se observan microaneurismas, exudados y hemorragias. (B) Procesamiento y mejora del contraste mediante software. Imagen obtenida de Tsiknakis⁴.

0 = No RD	Sin anormalidades
1 = RD leve	Solo microaneurismas
2 = RD moderada	Más que microaneurismas pero menos que RD no proliferativa
3 = RD severa	No hay signos de RD proliferativa y además cualquiera de los siguientes: - >20 hemorragias/cuadrante en los cuatro cuadrantes - Arrosariamentos venosos en dos o más cuadrantes - IRMA en 1 o más cuadrantes
4 = RD proliferativa IRMA: anormalidades microvasculare	Uno o ambos: - Neovascularización - Hemorragia vítrea y/o prerretiniana es intrarretinianas; RD: retinopatía diabética.

Tabla 3. Clasificación de la retinopatía diabética según la International Clinical Retinopathy Disease Severity Scale (ICDRDSS).

Detección y segmentación de lesiones asociadas a la retinopatía diabética

Aunque los modelos para la clasificación son esenciales en la detección de la RD, también es importante la caracterización y la segmentación de las lesiones más relevantes. Algoritmos de IA también han permitido la segmentación automática de lesiones tales como los microaneurismas, los exudados y/o las hemorragias. Es crucial en estos casos separar el fondo de la imagen (*background*) del primer plano (*foreground*), que es donde se encuentran estas lesiones. Especialmente en la RD, los algoritmos más utilizados en la segmentación están basados en UNet²⁶ (Tabla 5).

Algoritmos para el cribado de la retinopatía diabética

Algunos de los algoritmos también se han utilizado como métodos de cribaje, demostrando un gran rendimiento en la detección de la RD. Sin embargo, solo unos pocos están disponibles comercialmente en la actualidad:

 IDx-DR²⁷: se trata del primer sistema de IA de diagnóstico completamente autónomo que combina los resultados de la detección de múltiples biomarcadores. Se basa en la cuantificación la calidad de las imágenes y la detección de hemorragias, exudados duros, exudados blandos, lesiones

	Clasificación	Dataset	Arquitectura	Precisión (%)	Sensibilidad (%)	Especificidad (%)	AUC	Карра
Carson <i>et al</i> . (2018)	2-class 5-class	EyePACS	GoogLeNet		95 29-85	96		
Hagos <i>et al</i> . (2019)	2-class	EyePACS	InceptionV3	90,9%				
Ting Yip <i>et al</i> . (2018)	2-referable 2-VT	Privado	Ensemble		92,2 96,2	98,9 98,9	0,987 0,987	
Gargeya <i>et al</i> . (2017)	2-class 2-class 2-class	EyePACS Messidor2 E-ophtha	Custom CNN		94 90 90	98 87 94	0,97 0,94 0,95	
Ghosh <i>et al</i> . (2017)	2-class 5-class	EyePACS	Custom CNN	95 85	39,5-95			0,754
Pratt <i>et al.</i> (2016)	5-class	EyePACS	Custom CNN	75	30	95		
Xu <i>et al.</i> (2017)	2-class	EyePACS	Custom CNN	94,5				
Wan <i>et al</i> . (2018)	5-class	EyePACS	VGGNet	95,7	86,5	97,4	0,979	
Saiful <i>et al</i> . (2018)	2-diseased 2-risk 5-class	EyePACS	Custom CNN		94,5 98	90,2 94	0,844	
Ardiyanto <i>et al</i> . (2017)	2-class 3-class	FINDeRS	Custom CNN	95,7 60,3	76,9 65,4	100 73,4		
Chen <i>et al</i> . (2018)	5-class	EyePACS	InceptionV3		80			
Alexander <i>et al</i> . (2018)	2-class 2-class	EyePACS Messidor	VGGNet		92 99	72 71	0,923 0,967	
Wang <i>et al.</i> (2018)	5-class	EyePACS	InceptionV3	63,2				
Quellec <i>et al.</i> (2017)	2-referable	EyePACS	Custom CNN				0,954	
Jiang <i>et al.</i> (2019)	2-class	Privado	Ensemble	88,2	85,6	90,9	0,946	
Li et al. (2019)	6-class	DDR	ResNet	4-95,74				0,65
Abràmoff <i>et al</i> . (2016)	4-class	Messidor2	IDx-DR		96,8	87	0,98	
Sayres <i>et al</i> . (2019)	5-class	EyePACS	InceptionV4		91,6	94,7		
Ting <i>et al.</i> (2017)	2-referable 2-VT	Privado	VGGNet		90,5 100	91,6 91,1	0,936 0,958	
de La Torre <i>et al</i> . (2020)	2-class	Messidor2	Custom CNN	91	91,1	90,8		
Gulshan <i>et al.</i> (2016)	2-class 2-class	EyePACS Messidor2	InceptionV3		97,5 96,1	93,4 93,9		
Wang <i>et al</i> . (2017)	5-class 5-class	EyePACS Messidor	Custom CNN					0,865 0,854
Raju <i>et al</i> . (2017)	5-class	EyePACS	Custom CNN		80,3	92,3		
Li et al. (2020)	2-class	Messidor	Custom CNN	92,6	92		0,963	
García <i>et al</i> . (2017)	2-class	EyePACS	VGG16	83,7	54,5	93,6		
Lin <i>et al</i> . (2018)	5-class	EyePACS	Custom CNN	81,10	73,2	93,8	0,92	
Qummar <i>et al</i> . (2019)	5-class	EyePACS	Ensemble	80,8	51,5	86,7	0,97	
Lin <i>et al</i> . (2018)	5-class 5-class	Privado EyePACS	Custom CNN	87,3				0,875 0,859
Zhou <i>et al.</i> (2019)	5-class 5-class	IDRiD EyePACS	Custom CNN	91,3 89,1				0,905 0,872
Orlando <i>et al</i> . (2018)	H vs D Referable	Messidor	Ensemble		89,3 93,5		0,911 0,972	
Peter <i>et al.</i> (2021)	Referable	Privado	EyeArt		95,7	54,5		
Zhang <i>et al.</i> (2019)	H vs D 5-class	Privado	Ensemble	97,7 95,5	97,7 98,1	98 98	0,986	0,953 0,931
Bravo <i>et al</i> . (2017)	H vs D Referable 5-class	EyePACS	InceptionV4	72,4 86,3 45				
AUC: área bajo la curva. Tabla extraída y adaptada	a de Tsiknakis <i>et c</i>	ıl⁴.						

Tabla 4. Modelos de *deep learning* para la clasificación de la retinopatía diabética.

	Dataset	Arquitectura	Lesión	Exactitud (%)	Sensibilidad (%)	Especificidad (%)	AUC
Khojasteh <i>et al.</i> (2018)	DiaretDB1 + E-Ophtha	Custom CNN	Exudado Hemorragia Microaneurisma Sano	98 90 94 96	96 84 85 95	98 92 96 97	
Xue <i>et al</i> . (2019)	IDRid E-Ophtha	ResNet	Exudado Microaneurisma Exudado Microaneurisma	99,2 99,7 98,4 99,2	77,9 76,4 84,6 67,2	99,6 99,8 98,8 99,8	
Lam <i>et al.</i> (2018)	EyePACS	InceptionV3	Combinados	96			
Saha <i>et al.</i> (2019)	IDRiD	VGG16	Exudados blandos Exudados duros Microaneurisma Hemorragias				0,182 0,550 0,006 0,083
Tan <i>et al.</i> (2017)	IDRiD	Custom CNN	Sano Exudados Microaneurisma Hemorragia		95,7 87,6 62,6 46	75,8 98,7 98,9 98	
Chudzik <i>et al</i> . (2018)	ROC DiaretDB1 E-Ophtha	Custom UNet	Microaneurisma Microaneurisma Microaneurisma		48,5 64,1 85,9		
Benzamin <i>et al.</i> (2018)	IDRiD	Custom CNN	Exudados duros	96,6	98,3	43,4	
Yu et al. (2017)	E-Ophtha	Custom CNN	Exudados	91,1	88,9	96	
Prentasic <i>et al</i> . (2016)	DRiDB	Custom CNN	Exudados		78		
Playout <i>et al</i> . (2018)	DiaretDB1	Custom UNet	Lesiones rojas		66,9	99,8	
Gondal <i>et al.</i> (2017)	DiaretDB1	Custom CNN	Hemorragia Exudados duros Exudados blandos Microaneurisma		72 47 71 21		
Khojasteh <i>et al</i> . (2019)	DiaretDB1 E-Ophtha	ResNet	Exudados Exudados	98,2 97,6	99 98	96 95	
Quellec <i>et al.</i> (2017)	DiaretDB1	Custom CNN	Exudados duros Exudados blandos Microaneurisma Hemorragia				0,735 0,809 0,5 0,614
Zheng <i>et al.</i> (2018)	E-Ophtha DiaretDB1 Messidor	Custom UNet	Exudados Exudados Exudados	99,9 99,9 99,9	90,9 93,9 95,9	99,9 99,9 99,9	0,999
Kushwaha <i>et al</i> . (2019)	IDRID	UNet	Hemorragia Exudados duros		79,6 84,7	99,9 99,8	
Peter <i>et al.</i> (2021)	ROC E-Ophtha	Custom CNN	Microaneurisma Microaneurisma		76,9 77,1		0,660 0,637
Yang <i>et al.</i> (2017)	EyePACS	Custom CNN	Microaneurisma Hemorragia Exudados		70,3 84,3 90,8		
Yan <i>et al.</i> (2019)	ISBI	Custom UNet	Exudados duros Exudados blandos Microaneurisma Hemorragia				0,889 0,679 0,525 0,703

Tabla 5. Modelos de deep learning para la segmentación de las lesiones de la retinopatía diabética (continúa).

	Dataset	Arquitectura	Lesión	Exactitud (%)	Sensibilidad (%)	Especificidad (%)	AUC
Guo <i>et al</i> . (2019)	IDRID DDR E-Ophtha	Custom CNN	Exudados duros Exudados blandos Microaneurisma Hemorragia Exudados duros Exudados blandos Microaneurisma Hemorragia Exudados duros Microaneurisma				0,795 0,711 0,463 0,637 0,555 0,265 0,105 0,359 0,417 0,169
Zhou <i>et al.</i> (2019)	IDRiD	Custom UNet	Exudados blandos Exudados duros Microaneurisma Hemorragia				0,993 0,993 0,982 0,977
Guo <i>et al.</i> (2019)	IDRiD E-Ophtha	Custom CNN	Exudados duros Exudados duros		78 51,5		
Shan <i>et al.</i> (2016)	DiaretDB1	Custom CNN	Microaneurisma	87,6	86,5	88,7	0,934
Adem <i>et al.</i> (2018)	DiaretDB1	Custom CNN	Exudados		100	98,4	
Sambyal <i>et al.</i> (2020)	E-Ophtha IDRiD	Custom UNet	Exudados + microaneurismas	99,9	99,9	99,9	
AUC: área bajo la curva. Tabla extraída y adaptada	a de Tsiknakis N, ⁻	Theodoropoulos D, N	Aanikis G, Ktistakis E, Bo	outsora O, Berto A	, et al4.		

Tabla 5. Modelos de deep learning para la segmentación de las lesiones de la retinopatía diabética (continuación).

irregulares y neovascularización. Recientemente se han verificado los resultados en un escenario real en el Sistema Sanitario Danés²⁸. Las imágenes fueron clasificadas de acuerdo con el sistema ICDRDSS y EURODIAB, obteniendo unos valores de sensibilidad del 68 y el 91%, y de especificidad del 86 y el 84%, respectivamente. En general, se obtuvo una sensibilidad para detectar RD moderada o más del 87,2%, con una especificidad del 90,7%.

- RetmarkerDR: software que se ha utilizado para el cribado de la RD durante años. Tiene la habilidad de comparar imágenes actuales con las imágenes previas, comparando si ha habido progresión. Un estudio²⁹ muestra una sensibilidad del 73% para detectar cualquier retinopatía, del 85% en la detección de RD derivable y del 98% para los casos de RD proliferativa.
- EyeArt: software limitado al uso en investigación en Estados Unidos y Canadá. Es capaz de detectar, con un 96% de sensibilidad y un 88% de especificidad, RD más que leve, y en un 92 y un 94% de sensibilidad y especificidad, aquella reti-

nopatía que amenaza la visión. Además ha sido validado en un estudio multicéntrico con un total de 30.405 imágenes provenientes del *English Diabetic Eye Screening Programme*.

— Singapore SERI-NUS³⁰: se trata de uno de los sistemas capaces de detectar patologías no relacionadas con la RD. Está validado en aproximadamente más de 500.000 imágenes. Se ha demostrado una sensibilidad del 90,5% y una especificidad del 91,6% para la detección de RD derivable, adquiriendo valores mayores de sensibilidad para la detección de RD que amenaza la visión. Además obtuvo resultados comparables o superiores en términos de sensibilidad en comparación con los expertos, no así en términos de especificidad. Sin embargo, no mostró sesgos raciales ni de otro tipo, con un rendimiento comparable en diferentes subgrupos de pacientes; la edad, el sexo y el control glucémico no afectaron a la precisión del algoritmo.

A continuación, se puede consultar en la Tabla 6 un resumen con los *softwares/*algoritmos más utilizados en la actualidad para la detección de RD derivable.

	Año	Dataset	Nº imágenes	Arquitectura	AUC	Sensibilidad	Especificidad
EyeArt	2015		101.710		0,965	91,3	91,1
Abràmoff <i>et al</i> .	2016	Messidor2	1.748	AlexNet/VGG	0,98	96,8	87
	2018	-	892	AlexNet/VGG		87,2	90,7
Gulshan <i>et al</i> .	2016	Messidor2 EyePACS	1.748 9.963	InceptionV3	0,99 0,991	87 90,3	98,5 98,10
Gargeya <i>et al.</i>	2017	Kaggle images E-Ophtha Messidor2	75.137 463 1.748	Custom CNN	0,97 0,96 0,94		
Ting <i>et al</i> .	2017	SiDRP 14-15 Guangdong SIMES SINDI SCES BES AFEDS RVEEH Mexican CUHK HKU	71.896 15.798 3.052 4.512 1.936 1.052 1.968 2.302 1.172 1.254 7.706	VGG19	0,936 0,949 0,889 0,917 0,919 0,929 0,98 0,983 0,95 0,948 0,964	90,5 98,70 97,10 99,3 100 94,4 98,8 98,9 91,8 99,3 100	91,6 81,6 82 73,3 76,3 88,5 86,5 92,2 84,8 83,10 81,30
AUC: área bajo la curva.	la de Tina <i>et</i>	al ³¹ v Grzybowski et a	32				

Tabla 6. Principales algoritmos para el cribado de la retinopatía diabética.

Angiografía por tomografía de coherencia óptica y retinopatía diabética

La OCTA es una técnica novedosa rápida y no invasiva, basada en OCT, que permite la visualización *in situ* y con alta resolución de las diferentes capas vasculares coriorretinianas y analiza cuantitativamente características de la morfología vascular. Es capaz de objetivar alteraciones que se relacionan directamente con la RD, como la dilatación de capilares, la presencia de microaneurismas, detectar la disminución de la densidad vascular, áreas de no perfusión paramaculares, neovascularización y alteraciones en la zona avascular foveal³³. Se han publicado diferentes estudios que tratan de establecer biomarcadores de RD a partir de los datos cuantitativos generados en imágenes OCTA²².

En el caso de la diabetes, la OCTA ya ha demostrado ser útil para clasificar los grados de RD de forma objetiva y precisa³⁴, establecer relaciones con las cifras de hemoglobina glicosilada como medida del control glucémico sistémico³⁵ o correlacionarse con el grado de afectación renal³⁶.

Se ha visto que las imágenes retinianas y las métricas cuantitativas extraídas mediante OCTA presentan una correlación con la detección, severidad y progresión de distintas enfermedades oculares, como la RD, la oclusión vascular o el glaucoma³⁷. Los modelos de IA usando la combinación de imágenes de OCT y OCTA parecen ser más precisos en la detección de los cambios de la RD que solo aquellos que usan imágenes de fondo de ojo o de OCT³⁸.

Se han descrito diferentes modelos de DL en OCTA para evaluar la calidad de las imágenes, la segmentación de lesiones y la cuantificación de métricas vasculares con alta precisión³⁹. Por ejemplo, Ryu *et al.* desarrolló un modelo de CNN con una sensibilidad del 86-97%, una especificidad del 90,9% y un 87,2% de precisión. Otros modelos han sido capaces de diferenciar pacientes diabéticos sin RD de aquellos con RD con valores de área bajo la curva de 0,91 o de diagnosticar RD en pacientes no diabéticos con valores de área bajo la curva de 0,8⁴⁰.

El uso de esta nueva técnica ofrece la posibilidad de una detección precoz y puede ayudar en las evaluaciones de la progresión de la RD con gran precisión y fiabilidad, evaluando grandes cantidades de datos en poco tiempo y reduciendo el trabajo humano, desempeñando un papel clave en el análisis de imágenes OCTA de esta patología en desarrollo. Se requieren individuos multiétnicos con millones de muestras para entrenar los dispositivos DL-OCTA.

Conclusiones

Los algoritmos de IA están evolucionando rápidamente, y muchos se aplican para estudiar asociaciones entre imágenes de retina de distintos tipos y datos de interés oculares o sistémicos. La oculómica es la ciencia que estudia la identificación de biomarcadores oculares de enfermedades sistémicas, y no contempla únicamente los algoritmos de IA, habiendo un lugar para los *softwares* de procesamiento de imagen o las cuantificaciones de OCTA, entre otros parámetros.

Sin lugar a dudas, la mayoría de los estudios realizados en este área utilizan datasets de retinografías, en menor medida, OCT, y todavía son escasos los *datasets* de imágenes de OCTA. Desde el punto de vista de enfermedades cardiovasculares, se ha descrito la asociación de datos demográficos, el riesgo cardiovascular o la diabetes *mellitus*, con otros parámetros obtenidos por medio de procesamiento de imágenes con *softwares* de vasculatura retiniana, cuantificaciones OCTA o por algoritmos de aprendizaje automático o aprendizaje profundo.

La detección de la RD mediante IA podría desempeñar un papel importante en la prevención de la ceguera causada por la diabetes. La investigación futura es crucial para abordar algunos de los retos potenciales con el fin de mejorar la adopción de estas tecnologías en el ámbito sanitario.

Bibliografía

- 1. Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, *et al.* Insights into Systemic Disease through Retinal Imaging-Based Oculomics. *Transl Vis Sci Technol.* 2020;9(2):6.
- 2. Chhablani PP, Ambiya V, Nair AG, Bondalapati S, Chhablani J. Retinal Findings on OCT in Systemic Conditions. *Semin Ophthalmol.* 2018;33(4):525-46.
- 3. Khan SM, Liu X, Nath S, Korot E, Faes L, Wagner SK, *et al.* A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. *Lancet Digit Health.* 2021;3(1):e51-66.
- Tsiknakis N, Theodoropoulos D, Manikis G, Ktistakis E, Boutsora O, Berto A, et al. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review. Comput Biol Med. 2021;135:104599.
- 5. Leishman R. The eye in general vascular disease: hypertension and arteriosclerosis. *Br J Ophthalmol.* 1957;41(11):641-701.
- 6. Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, *et al.* Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. *Ophthalmology*. 1999;106(12):2269-80.

- 7. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet.* 2016;388(10053):1459-544.
- 8. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, *et al.* The Human Microcirculation: Regulation of Flow and Beyond. *Circ Res.* 2016;118(1):157-72.
- 9. Strain WD, Paldánius PM. Diabetes, cardiovascular disease and the microcirculation. *Cardiovasc Diabetol.* 2018;17(1):57.
- Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, *et al.* Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. *Nat Biomed Eng.* 2018;2(3):158-64.
- 11. Cheung CY, Xu D, Cheng CY, Sabanayagam C, Tham YC, Yu M, *et al.* A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. *Nat Biomed Eng.* 2021;5(6):498-508.
- 12. Ting DSW, Peng L, Varadarajan AV, Liu TYA. Novel Retinal Imaging in Assessment of Cardiovascular Risk Factors and Systemic Vascular Diseases. [Internet]. Karger; 2019. [Citado 24 May 2023]. Disponible en: https://karger.com/books/book/332/chapter/5519207/Novel-Retinal-Imaging-in-Assessment-of
- 13. Owen CG, Rudnicka AR, Welikala RA, Fraz MM, Barman SA, Luben R, *et al.* Retinal Vasculometry Associations with Cardiometabolic Risk Factors in the European Prospective Investigation of Cancer-Norfolk Study. *Ophthalmology*. 2019;126(1):96-106.
- Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. *Eur Heart J.* 2021;42(34):3227-337.
- Arnould L, Guenancia C, Azemar A, Alan G, Pitois S, Bichat F, et al. The EYE-MI Pilot Study: A Prospective Acute Coronary Syndrome Cohort Evaluated With Retinal Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2018;59(10):4299-306.
- Mirshahi R, Anvari P, Riazi-Esfahani H, Sardarinia M, Naseripour M, Falavarjani KG. Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach. *Sci Rep.* 2021;11(1):1031.
- 17. Barriada RG, Masip D. An Overview of Deep-Learning-Based Methods for Cardiovascular Risk Assessment with Retinal Images. *Diagnostics*. 2022;13(1):68.
- Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. *Diabetes Res Clin Pract.* 2019;157:107843.
- Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. *Rev Diabet Stud.* 2015;12(1-2):159-95.
- ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2023. *Diabetes Care*. 2023;46(Supl 1):S203-15.

- 21. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, *et al.* Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. *Ophthalmology.* 2021;128(11):1580-91.
- 22. Monteiro-Henriques I, Rocha-Sousa A, Barbosa-Breda J. Optical coherence tomography angiography changes in cardiovascular systemic diseases and risk factors: A Review. *Acta Ophthalmol.* 2022;100(1):e1-15.
- 23. Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments. *Int J Mol Sci.* 2018;19(6):1816.
- 24. Early Treatment Diabetic Retinopathy Study Design and Baseline Patient Characteristics: ETDRS Report Number 7. *Ophthalmology*. 1991;98(5 Supl):741-56.
- 25. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, *et al.* Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. *Ophthalmology.* 2003;110(9):1677-82.
- Lam C, Yi D, Guo M, Lindsey T. Automated Detection of Diabetic Retinopathy using Deep Learning. *AMIA Jt Summits Transl Sci Proc.* 2018;2017:147-55. eCollection 2018.
- 27. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, *et al.* Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. *Invest Ophthalmol Vis Sci.* 2016;57(13):5200-6.
- 28. Van der Heijden AA, Abramoff MD, Verbraak F, Van Hecke MV, Liem A, Nijpels G. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. *Acta Ophthalmol.* 2018;96(1):63-8.
- 29. Tufail A, Kapetanakis VV, Salas-Vega S, Egan C, Rudisill C, Owen CG, *et al*. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. *Health Technol Assess Winch Engl.* 2016;20(92):1-72.
- 30. Ting DSW, Cheung CYL, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017;318(22):2211-23.

- 31. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, *et al*. Artificial intelligence and deep learning in ophthalmology. *Br J Ophthalmol*. 2019;103(2):167-75.
- 32. Grzybowski A, Brona P, Lim G, Ruamviboonsuk P, Tan GSW, Abramoff M, *et al.* Artificial intelligence for diabetic retinopathy screening: a review. *Eye.* 2020;34(3):451-60.
- 33. Goudot MM, Sikorav A, Semoun O, Miere A, Jung C, Courbebaisse B, et al. Parafoveal OCT Angiography Features in Diabetic Patients without Clinical Diabetic Retinopathy: A Qualitative and Quantitative Analysis. J Ophthalmol. 2017;2017:8676091.
- 34. Barraso M, Alé-Chilet A, Hernández T, Oliva C, Vinagre I, Ortega E, *et al*. Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 1: Diabetic Retinopathy. *Transl Vis Sci Technol*. 2020;9(10):34.
- Bernal-Morales C, Alé-Chilet A, Martín-Pinardel R, Barraso M, Hernández T, Oliva C, *et al.* Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 4: Glycated Haemoglobin. *Diagn Basel Switz.* 2021;11(9):1537.
- Alé-Chilet A, Bernal-Morales C, Barraso M, Hernández T, Oliva C, Vinagre I, *et al.* Optical coherence tomography angiography in type 1 diabetes mellitus-report 2: Diabetic kidney disease. *J Clin Med.* 2022;11(1):197.
- 37. Sun Z, Yang D, Tang Z, Ng DS, Cheung CY. Optical coherence tomography angiography in diabetic retinopathy: an updated review. *Eye*. 2021;35(1):149-61.
- 38. Govindaswamy N, Ratra D, Dalan D, Doralli S, Tirumalai AA, Nagarajan R, et al. Vascular changes precede tomographic changes in diabetic eyes without retinopathy and improve artificial intelligence diagnostics. J Biophotonics. 2020;13(9):e202000107.
- 39. Lauermann JL, Treder M, Alnawaiseh M, Clemens CR, Eter N, Alten F. Automated OCT angiography image quality assessment using a deep learning algorithm. *Graefes Arch Clin Exp Ophthalmol.* 2019; 257(8):1641-8.
- 40. Ryu G, Lee K, Park D, Park SH, Sagong M. A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. *Sci Rep.* 2021;11(1):23024.